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Problem: 

“Imaging technique where given an optical flow or 

point correspondences, compute a 3D motion (in 

terms of translation and rotation) and space (depth)”.

Dr. Mubarak Shah

Goal: 

Recovery of 3D (shape) from one or two (2D images). 



From Images to 3D structures.



Methods to achieve 3D recovery: 

➢ Stereo

➢ Motion

➢ Shading

➢ Photometric Stereo

➢ Texture

➢ Contours

➢ Silhouettes

➢ Defocus



Applications of 3D recovery: 

➢ Object Recognition

➢ Robotics

➢ Computer Graphics

➢ Image Retrieval

➢ Geo-localization

➢ Archaeology

➢ Sports



Structure from Motion has been under discussion 

for the last 20 years… 

There is a long list of researchers such as…

➢ S. Ullman

➢ Hanson & Riseman

➢ Webb & Aggarwal

➢ T.Huang

➢ Heeger & Jepson

➢ Chellappa

➢ Faugeras

➢ Zisserman

➢ Kanade

➢ Pentland

➢ Van Gool

➢ Pollefeys

➢ Seitz & Szeliski

➢ Shahsua

➢ Irani

➢ Vidal & Yi Ma

➢ Medioni

➢ Fleet

➢ Tian & Shah



Tomasi and Kanade Factorization: Orthographic 

Projection. 

Assumptions: 

➢ The camera model is orthographic.

➢ The positions of “P” points in “F” frames 

(F>=3), which are not all coplanar and 

have been tracked.

➢ The entire sequence has been 

acquired before starting (batch 

mode).

➢ Camera calibration not needed, if we 

accept 3D points up to a scale factor.

Input: 

a) Images b) KLT Tracks



Feature Points.



Mean Normalize Feature Points.

(A)



Orthographic Projection.



If Origin of world is at the centroid of object points, 
Second term is zero.



Rank Theorem.

Without noise, the registered measurement matrix W, is at most of rank 

three. 

Because W is a product of two matrices,

The maximum rank of S is 3. 



Linearly Independence.

A finite subset of n vectors, v1, v2, …, vn, from the vector space V, is linearly independent if 

and only if there exits a set of n scalars, a1, a2, …, an, not all zero such that

a1v1 + a2v2 + … anvn = 0

Rank of a Matrix.

➢ The column rank of a matrix A is the maximum number of linearly independent 

column vectors of A.

➢ The row rank of a matrix A is the maximum number of linearly independent row 

vectors of A.   

➢ The column rank of A is the dimension of the column space of A.

➢ The row rank of A is the dimension of the row space of A.



How to find translation.

af is projection of camera translation along x-axis

Projected camera translation can be 

computed: 



Noisy Measurements. 

➢ Without noise, the matrix W must be at most rank 3. When noise corrupts the images, 

however, W will not be of rank 3. Rank theorem can be extended to the case of noisy 

measurements.

Singular Valued Decomposition SVD.

Theorem: Any m by n matrix A, for which m>=n, can be written as:



Steps for 3D Reconstruction:

1. Images to Points: Structure from 

Motion

2. Points to More Points: Multiple View 

Stereo

3. Points to Meshes: Model Fitting

4. Meshes to Models: Texture Mapping



SFM Pipeline. 

1. Find the 2D 

Features 

(Keypoints)

2. Re-match 

keypoint

3. Optimize the 

positions of 3D 

points

Feature Descriptors: 

• SIFT 

• SURF

Feature Matching  Algorithms: 

• RANSAC 

• Hough Transform

• Bundle Adjustment



SIFT descriptors.



RANSAC re-matching.



Bundle Adjustment.



Digital Images.
A digital image can be defined as a two-dimensional 

function, f(x,y), where x and y are spatial coordinates, and 

the amplitude of f at any pair of coordinates (x, y) is called 

the intensity of gray level of f of the image at the point.

A digital image can thus be treated as a 2-D array of 

integers. Let’s denote a digital image as f(i, j). The variables 

take following values: 

➢ i∈[0,h-1], where h is the height of the image

➢ j∈[0,w-1], where w is the width of the image

➢ f(i,j) ∈[0,L-1], where L-1=255 for a 8bit image



Feature Detectors and Feature Descriptors.

A feature detector is an algorithm 

which takes an image and outputs 

locations (i.e. pixel coordinates) from 

the image based on some criterion.

A feature descriptor is an algorithm 

which takes an image and outputs 

feature vector values, which 

describes the image patch around 

an interest point. 

Feature descriptors encode 

interesting information into a series of 

numbers and act as a sort of 

numerical "fingerprint" that can be 

used to differentiate one feature 

from another.



Point Features (Points of Interest).

Goal: Detect the same point 

in each image 

independently

Challenge: Need 

repeatability in presence of 
Scale, Affine distortions and 

illumination change.

Not all points are good 

candidates:

-Texture-less regions, edges 

Effect of noise on feature 

extraction



Scale-invariant feature transform (SIFT).

In 2004, D.Lowe, University of British Columbia, 

came up with a new algorithm, Scale Invariant 

Feature Transform (SIFT) in his paper, Distinctive 

Image Features from Scale-Invariant 

Keypoints, which extract keypoints and 

compute its descriptors.

For any object in an image, interesting points 

on the object can be extracted to provide a 

"feature description" of the object. This 

description, extracted from a training image, 

can then be used to identify the object when 

attempting to locate the object in a test 

image containing many other objects. 

To perform reliable recognition, it is important 

that the features extracted from the training 

image be detectable even under changes in 

image scale, noise and illumination. 



Stages of computation SIFT algorithm.

1. Scale-space extrema detection: The first stage of computation searches 
over all scales and image locations.  It is implemented efficiently by using a 

difference-of-Gaussian function to identify potential interest points that are 

invariant to scale and orientation.

2. Keypoint localization: At each candidate location, a detailed model is fit 
to determine location and scale. Keypoints are selected based on 

measures of their stability.

3. Orientation assignment: One or more orientations are assigned to each 
keypoint location based on local image gradient directions.  All future 

operations are performed on image data that has been transformed 

relative to the assigned orientation, scale, and location for each feature, 

thereby providing invariance to these transformations.

4. Keypoint descriptor: The local image gradients  are measured at the 
selected scale in the region around each keypoint.  These are transformed 

in to a representation that allows for significant levels of local shape 

distortion and change in illumination.



Construct Scale Space and LoG approximation.

The scale space of an image is defined as a function, 

𝐿(𝑥,𝑦,𝜎), which is produced from the convolution of a 

variable-scale Gaussian, 𝐺(𝑥,𝑦,𝜎), with an input image, 

𝐼 𝑥,𝑦 .

where ∗ is the convolution operation in x and y, and

The difference-of-Gaussian function can be 

computed from the difference of two nearby scales 

separated by a constant multiplicative factor k:





Local extrema detection.

In order to detect maxima and minima of the difference-of-Gaussian images, 

each sample point/pixel (marked with X) is compared to its eight neighbors in the 

current image and nine neighbors in the scale above and below. Its is selected, 

only if its larger than all of these neighbors or smaller than all of them. 



Accurate keypoint localization.

Once a keypoint 

candidate has been found 

by comparing a pixel to its 

neighbors,  the next step is 

to perform a detailed fit to 

the nearby data for 

location, scale, and ratio of 

principal curvatures.

This information  allows  

points  to  be rejected  that  

have  low  contrast  (and  

are therefore sensitive to 

noise) or are poorly 

localized along an edge.



Orientation Assignment.
Orientation is assigned to each keypoint to achieve invariance to 

image rotation. A neigbourhood is taken around the keypoint location 

depending on the scale, and the gradient magnitude and direction is 

calculated in that region. An orientation histogram with 36 bins covering 

360 degrees is created. (It is weighted by gradient magnitude and 

gaussian-weighted circular window with σ equal to 1.5 times the scale 

of keypoint. The highest peak in the histogram is taken and any peak 

above 80% of it is also considered to calculate the orientation. It creates 

keypoints with same location and scale, but different directions



Keypoint Descriptor.

Now keypoint descriptor is created. A 16x16 neighbourhood around the keypoint 

is taken. It is devided into 16 sub-blocks of 4x4 size. For each subblock, 8 bin 

orientation histogram is created. So a total of 128 bin values are available. It is 

represented as a vector to form keypoint descriptor. In addition to this, several 

measures are taken to achieve robustness against illumination changes, rotation 

etc.



Keypoint Matching.

The best candidate match for each keypoint is found by identifying its nearest neighbor 

in the database of keypoints from training images. The nearest neighbor is defined as 

the keypoint with minimum Euclidean distance for the invariant descript or vector.



Final SIFT results.

SIFT robustness to: 

• affine distortion 

• change in 3D viewpoint 

• addition of noise 

• changes in illumination



RANSAC.

The RANdom SAmple Consensus (RANSAC) algorithm proposed by Fischler and 

Bolles is a general parameter estimation approach designed to cope with a 

large proportion of outliers in the input data. It  randomly  chooses  a  minimal set 

of observations and evaluates their likelihood until a good solution is found or a 

preset number of trials is  reached. It  has regularly been applied for estimation of 

model parameters in feature matching, detection and registration. 



Color coding of points produced by SIFT.
Red points: the points without a “good” 

match in the other image.In this image, 

the goodness of the match is decided by 

looking at the ratio of the distances to the 

second nearest neighbor and first nearest 

neighbor. If this ration is high (above some 

threshold), it is considered a “good” 

match. 

Blue points: these are points with a “good” 

match in which the match was wrong, 

meaning it connected two points that did 

not actually correspond in the world. 

Yellow points: these are correct matches. 

We need to run RANSAC until it randomly 

picked 4 yellow points from among the 

blue and yellow points (the matches 

estimated to be “good”).



RANdom SAmple Consensus (RANSAC).

Steps of the Algorithm: 

i. Select randomly the minimum number 

of points required to determine the 

model parameters.

ii. Solve for the parameters of the model.

iii. Determine how many points from the 

set of all points fit with a predefined 

tolerance E.

iv. If the fraction of the number of inliers 

over the total number points in the set 

exceeds a predefined threshold τ, 

reestimate the model parameters 

using all the identified inliers and 

terminate.

v. Otherwise, repeat steps 1 through 4 

(maximum of N times)



Bundle Adjustment.
Bundle adjustment is a unified triangulation method to simultaneously estimate the internal 

and external camera parameters and the 3D coordinates of the scene points in a 

statistically optimal manner. Conceptually, it solves the inverse problem to computer 

graphics: given the images of an unknown scene the task is to recover the scene structure, 

i.e., the visible surface together with the parameters describing the cameras used for taking 

the images.

The task is to 
automatically 
estimate: 
• Position, 

Orientation and 
Focal Length of 
cameras

• 3D positions of 
feature points, 
by minimizing the 
sum of squares of 
reprojecting 
errors.

In other words:
a) We have a set of points in real world defined by their 

coordinates (X,Y,Z) in some apriori chosen “world 
coordinate frame”. 

b) We photograph these points by different cameras, 
which are characterized by their orientation and 

translation relative to the world coordinate frame and 

also by focal length and two radial distortion 
parameters (so 9 parameters in total). 

c) Then we precicely measure 2-D coordinates (x,y) of 
the points projected by the cameras on images.



Bundle Adjustment.

Each camera sees several points.

Each point is seen by several cameras.

Cameras are independent of each 

other (given the points), same for the 

points.

Epipolar geometry .

A point in one image “generates” a 

line in another image (called the 

epipolar line).



Rectification of images.

In practice, it is convenient if the image scanlines (rows) are 

the epipolar lines. So bundle adjustment reproject image 

planes onto a common plane parallel to the baseline. 

Afterwards pixel motion is orizontal.



Bundle adjustment review.

Advantages 

• Most accurate triangulation 

technique since we have direct 

transformation between image 

and ground coordinates.

• Straight forward to include 

parameters that compensate 

for various deviations from the 

collinearity model.

• Can be used for normal, 

convergent, aerial, and close 

range imagery.

Disadvantages

• Model is non linear: approximations as 

well as partial derivatives are needed.

• Requires computer intensive 

computations.



Multi-View Stereo.

MVS refines the mesh produced by SFM technique, to produce a dense 

reconstruction, given the camera parameters of each image to work. 

Clustering Views for Multi-view Stereo (CMVS): takes the output of a structure-from-

motion (SFM) as an input, then decomposes the input images into smaller clusters. 

Patch-based Multi-view Stereo (PMVS): computes 3D vertices which were not 

correctly detected by descriptors or matched points (creation of dense cloud)



Surface Reconstruction from Points.

Delaunay triangulation: Given set P of 

discrete points in a plane is a 

triangulation DT(P) such that no point in P 

is inside the circumcircle of any triangle in 

DT(P).

Poisson Surface Reconstruction: 

Surface reconstructed based on 

Poisson equation
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